Browse Source

Initial commit. Most formulas retrieved from Wikipedia.com

Bryan Allred 14 years ago
commit
fc7c80c942

+ 17 - 0
.project

@ -0,0 +1,17 @@
1
<?xml version="1.0" encoding="UTF-8"?>
2
<projectDescription>
3
	<name>FibonacciFun</name>
4
	<comment></comment>
5
	<projects>
6
	</projects>
7
	<buildSpec>
8
		<buildCommand>
9
			<name>org.python.pydev.PyDevBuilder</name>
10
			<arguments>
11
			</arguments>
12
		</buildCommand>
13
	</buildSpec>
14
	<natures>
15
		<nature>org.python.pydev.pythonNature</nature>
16
	</natures>
17
</projectDescription>

+ 10 - 0
.pydevproject

@ -0,0 +1,10 @@
1
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
2
<?eclipse-pydev version="1.0"?>
3

4
<pydev_project>
5
<pydev_property name="org.python.pydev.PYTHON_PROJECT_INTERPRETER">Default</pydev_property>
6
<pydev_property name="org.python.pydev.PYTHON_PROJECT_VERSION">python 2.7</pydev_property>
7
<pydev_pathproperty name="org.python.pydev.PROJECT_SOURCE_PATH">
8
<path>/FibonacciFun/src</path>
9
</pydev_pathproperty>
10
</pydev_project>

+ 5 - 0
run.bat

@ -0,0 +1,5 @@
1
@echo off
2
3
set PATH=C:\Python27
4
5
%PATH%\python.exe src/Main.py

+ 3 - 0
run.sh

@ -0,0 +1,3 @@
1
#!/bin/sh
2
3
python src/Main.py

+ 20 - 0
src/FibonacciBinet.py

@ -0,0 +1,20 @@
1
from math import log
2

3
phi = (1 + 5 ** 0.5) / 2
4

5
def fib(n):
6
    '''
7
    Find the Fibonacci number using Binet's formula.
8
    '''
9
    
10
    return int(round((phi ** n - (1 - phi) ** n) / 5 ** 0.5))
11

12
def fibinv(f):
13
    '''
14
    Inverse Fibonacci function using Binet's formula.
15
    '''
16
    
17
    if f < 2:
18
        return
19
    
20
    return int(round(log(f * 5 ** 0.5) / log(phi)))

+ 15 - 0
src/FibonacciDjikstra.py

@ -0,0 +1,15 @@
1
fibs = {0: 0, 1: 1}
2

3
def fib(n):
4
    '''
5
    Find the Fibonacci number using the Djikstra method.
6
    '''
7
    
8
    if n in fibs:
9
        return fibs[n]
10
    elif n % 2 == 0:
11
        fibs[n] = ((2 * fib((n / 2) - 1)) + fib(n / 2)) * fib(n / 2)
12
        return fibs[n]
13
    else:
14
        fibs[n] = (fib((n - 1) / 2) ** 2) + (fib((n + 1) / 2) ** 2)
15
        return fibs[n]

+ 10 - 0
src/FibonacciGenerator.py

@ -0,0 +1,10 @@
1
def fib():
2
    '''
3
    Generate each Fibonacci number in an infinite loop.
4
    '''
5
    
6
    a, b = 0, 1
7
    
8
    while 1:
9
        yield a
10
        a, b = b, a + b

+ 11 - 0
src/FibonacciIteration.py

@ -0,0 +1,11 @@
1
def fib(n):
2
    '''
3
    Find the Fibonacci number using iteration.
4
    '''
5
    
6
    a, b = 0, 1
7
    
8
    for i in range(n):
9
        a, b = b, a + b
10
    
11
    return a

+ 22 - 0
src/FibonacciLucas.py

@ -0,0 +1,22 @@
1
def powLF(n):
2
    if n == 1:
3
        return (1, 1)
4
    
5
    L, F = powLF(n // 2)
6
    L, F = (L ** 2 + 5 * F ** 2) >> 1, L*F
7
    
8
    if n & 1:
9
        return ((L + 5 * F) >> 1, (L + F) >> 1)
10
    
11
    return (L, F)
12

13
def fib(n):
14
    '''
15
    Find the Fibonacci number using Lucas numbers.
16
    '''
17
    
18
    if n & 1:
19
        return powLF(n)[1]
20
    else:
21
        L, F = powLF(n // 2)
22
        return L * F 

+ 23 - 0
src/FibonacciMatrix.py

@ -0,0 +1,23 @@
1
def mul(A, B):
2
    a, b, c = A
3
    d, e, f = B
4
    
5
    return a*d + b*e, a*e + b*f, b*e + c*f
6

7
def pow(A, n):
8
    if n == 1:
9
        return A
10
    elif n & 1 == 0:
11
        return pow(mul(A, A), n//2)
12
    else:
13
        return mul(A, pow(mul(A, A), (n - 1)//2))
14

15
def fib(n):
16
    '''
17
    Find the Fibonacci number using a matrix.
18
    '''
19
    
20
    if n < 2:
21
        return n
22
    
23
    return pow((1, 1, 0), n - 1)[0]

+ 11 - 0
src/FibonacciMemory.py

@ -0,0 +1,11 @@
1
memory = {0: 0, 1: 1}
2

3
def fib(n):
4
    '''
5
    Find the Fibonacci number with the help of cached results.
6
    '''
7
    
8
    if not n in memory:
9
        memory[n] = fib(n - 1) + fib(n - 2)
10
    
11
    return memory[n]

+ 11 - 0
src/FibonacciRecursive.py

@ -0,0 +1,11 @@
1
def fib(n):
2
    '''
3
    Find the Fibonacci number using a recursive function.
4
    '''
5
    
6
    if n == 0:
7
        return 0
8
    elif n == 1:
9
        return 1
10
    else:
11
        return fib(n - 1) + fib(n - 2)

+ 92 - 0
src/Main.py

@ -0,0 +1,92 @@
1
#!/usr/bin/python
2
'''
3
Created on Jun 10, 2011
4

5
@author: BMAllred
6
'''
7

8
import FibonacciBinet
9
import FibonacciDjikstra
10
import FibonacciGenerator
11
import FibonacciIteration
12
import FibonacciLucas
13
import FibonacciMatrix
14
import FibonacciMemory
15
import FibonacciRecursive
16
from StopWatch import StopWatch
17

18
def displayMenu():
19
    stopWatch = StopWatch()
20
    
21
    while True:
22
        print
23
        print "Fun with Fibonacci!!!"
24
        print
25
        print "Select your poison:"
26
        print
27
        print "\t1. Binet's formula"
28
        print "\t2. Djikstra's method"
29
        print "\t3. Iteration"
30
        print "\t4. Lucas' numbers"
31
        print "\t5. Matrix"
32
        print "\t6. Memory"
33
        print "\t7. Recursive (intensive)"
34
        print "\t-------------------------"
35
        print "\t0. Exit"
36
        print
37
        
38
        # Retrieve the user menu choice.
39
        choice = raw_input("Option: ")
40
        
41
        # Exit early if at all possible.
42
        if choice == "0":
43
            break
44
        
45
        # Let the user pick which number to find.
46
        n = -1
47
        while n < 0:
48
            n = int(raw_input("Number: "))
49
        
50
        # Start the timer.
51
        stopWatch.Start()
52
        answer = "Not available."
53
        
54
        try:
55
            # Perform the necessary method.
56
            if choice == "1":
57
                answer = FibonacciBinet.fib(n)
58
            elif choice == "2":
59
                answer = FibonacciDjikstra.fib(n)
60
            elif choice == "3":
61
                answer = FibonacciIteration.fib(n)
62
            elif choice == "4":
63
                answer = FibonacciLucas.fib(n)
64
            elif choice == "5":
65
                answer = FibonacciMatrix.fib(n)
66
            elif choice == "6":
67
                answer = FibonacciMemory.fib(n)
68
            elif choice == "7":
69
                answer = FibonacciRecursive.fib(n)
70
        except:
71
            pass
72
        
73
        # Stop the timer.
74
        stopWatch.Stop()
75
        
76
        # Give the user some feedback and statistics.
77
        print
78
        print "Answer:\t\t{0}".format(answer)
79
        print "Time Elapsed:\t{0}".format(stopWatch.TimeElapsed())
80
        print
81
        
82
        # Prepare the stop watch for the next iteration.
83
        stopWatch.Reset()
84
        
85
        raw_input("Press ENTER to continue...")
86
    
87
    print
88
    print "Hope you had as much as I did!"
89
    print
90

91
if __name__ == '__main__':
92
    displayMenu()

+ 41 - 0
src/StopWatch.py

@ -0,0 +1,41 @@
1
'''
2
Created on Jun 10, 2011
3

4
@author: BMAllred
5
'''
6
import time
7

8
class StopWatch(object):
9
    '''
10
    Stop watch object.
11
    '''
12

13
    def __init__(self):
14
        '''
15
        Initializes a new instance of the StopWatch class.
16
        '''
17
        
18
        self.StartTime = None
19
        self.StopTime = None
20
    
21
    def Start(self):
22
        self.StartTime = time.clock()
23
        self.StopTime = None
24
        
25
        return self.StartTime
26
    
27
    def Stop(self):
28
        self.StopTime = time.clock()
29
    
30
    def TimeElapsed(self):
31
        
32
        if self.StartTime is None:
33
            return -1
34
        elif self.StopTime is None:
35
            return time.clock() - self.StartTime
36
        
37
        return self.StopTime - self.StartTime
38
    
39
    def Reset(self):
40
        self.StartTime = None
41
        self.StopTime = None